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The telemetry modulation index, telemetry bit rate, subcarrier waveform, and subcar-
rier frequency are shown to be the key system parameters that contribute to the perfor-
mance degradation of a Costas loop in the presence of space telemetry signals. The effects
of the Doppler in the loop are also investigated in this article. The results of this study
have been input to the Consultative Committee for Space Data Systems {(CCSDS) for
consideration in the future standard suppressed-carrier space telemetry system.

l. Introduction

The Consultative Committee for Space Data Systems
(CCSDS) has classified space telemetry signals into two cate-
gories: Category A, non-deep space missions, and Category B,
deep space missions. Category A includes those missions hav-
ing altitudes above the Earth less than 2 X 106 km, and Cate-
gory B contains missions having altitudes above the Earth
greater than 2 X 109 km. For space telemetry signals, the
CCSDS has recommended that a subcarrier be used with a
residual carrier when transmitting at low bit rates and that
PSK subcarrier modulation be used when a telemetry subcar-
rier is employed. A square-wave subcarrier is recommended for
Category B, and a sine-wave subcarrier for Category A [1].

Costas loop receivers with a residual carrier have been ana-
lyzed by M. K. Simon [2]. This analysis has not considered
the case where the signal utilizes PSK subcarrier modulation,
and also has assumed that the loop phase error approaches
zero at a high loop Signal-to-Noise Ratio (SNR) with the
Doppler signal being compensated for.

In this article. the performance degradation of the Costas
loop in the presence of space telemetry signals is investigated.
This represents an extension of [2] to include PSK subcar-
rier modulation and the presence of Doppler in the input sig-
nal. The assumption that the loop phase error approaches zero
at a high loop SNR is removed in this analysis. Only the linear
approximation which is valid for small phase errors is assumed.

ll. Performance of the Costas Loop
in the Presence of Deep Space
Telemetry Signals

The deep space Category B telemetry signal recommended
by the CCSDS can be presented mathematically by [1]

S(t) = 2P~ sin(wy? +m * d(t)- P(r)+86(z)) 1)
where P is the total received power, wy, is the carrier radian

frequency and 6(r) the corresponding Doppler signal to be
estimated, m is the data modulation index with d(¢) the NRZ
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binary valued data sequence, and P(¢) is the unit power square-
wave subcarrier of frequency f, ..

The above signal is received in the presence of Additive
White Gaussian Noise (AWGN), n(¢), with

() = V2 [N (1) cos(wyt +0(1)) - N(t) sin (et +6(2))]

where N,(¢) and N,(t) are approximately statistically inde-
pendent, stationary, white Gaussian noise processes with
single-sided noise spectral density N, W/Hz, and single-sided
bandwidth By; <(wq,/2), and the Costas loop is used to track
the received signal. If ¢,(¢) denotes the loop phase error, then
from previous analysis of this type [2] (assuming 2¢,(¢) is
small enough so that the linearizing approximations are appli-

cable. ie., sin(26,(1)) = 26,(r). cos(2¢,(1)) ~ 1), we can
show that
20,00 = 20,(0)+ 29,,(0) + 26, (1) @
where
8,0 = [1- H(p)] + 60) 3)
oy = Z2E ey @
6, = T2 (2,29 5)

Note that the self-noise of data has been assumed to be
small so that it can be ignored in the above equations.

Here
H(s) = closed-loop transfer function
- YKF(s) (6)
s+ yKF(s)
where
K = (VCO gain) - (phase detector gain)
F(s) = transfer function of loop filter.

vy = P(cos®(m)-a - sin®(m)) )
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N(t.2¢) = [Nfs(:)2 =N, () +2VP {Nfs(t)- cos(m)
= M (@) - N () sin(m)}] - 24,)
+ [2 CN (@) N () + 2PN, (1) * cos(m)
+M(1) - N, (1)« sin(m)}:l ®)

Here M(r), Nps(2), Ny (7) are the equivalent low-pass arm
filtered versions of M(z), N,(¢), N,(z), respectively. Note that
M(t) is the PSK subcarrier modulated data signal which is
given by

M) = d() - P(t) )

As an example, the relationship between M(f) and the
filtered version of M,(¢) is given by

M) = G(p)- M() (10)

where G(p) is the arm filter with p the Heaviside operator.

In Eq. (2) the loop phase error is expressed in terms of the
loop phase error due to the Doppler signal (¢, (7)), loop phase
error due to the modulation (¢,,(¢)), and phase error due to
the noise (¢n(¢)). The factor a in Eq. (7) denotes the modula-
tion distortion factor

a =f S, (N IGG2nf)* - df (11)

Here S,,(r) denotes the power spectral density of the data
modulated subcarrier M(¢). It can be shown that for a square-
wave subcarrier,

[S,(F - kf,) + S,(f + k£, )]

S =5 2 > (12)

where S,(f) is the power spectrum density of the equiproba-
ble NRZ binary telemetry signal.

Let us assume that the initial phase offset of the incoming
signal from the phase of the free-running VCO, the data
sequence, and the noise are independent. Then, from Eq. (2),
the mean-squared tracking phase jitter can be shown to have
the form:

02(9,) = *(8,) +0*(9,,) + 0%(9y) (13)



where 02(¢p,) is the mean-squared tracking phase jitter due to
the Doppler signal, 02(¢M) the phase jitter due to modulation
produced by the residual carrier. and 02(¢,,) the jitter due to
the noise. Using [3] it is easy to show that, from Eq. (2),

oo

o*(¢,) = ziﬂf 11 -H(jw) 1* - E{16(jw) *} + de
- (14)
. 2 =
a*(¢,,) = Mf |H(jw) >+ S, (w) * dw
o enn? Ja M
(15)
2(¢ :__l_fm”{], 2.5 - d
7 @) em2v? J.. VeIl Syl) de
(16)
Here,
E{16(jw) |*} = spectral density of the Doppler signal 8(¢)

SMf(w) = spectral density of the data-modulated
subcarrier M (t) after low pass arm filter-

ing = Sy (w) * 1 G(j2mf) |2

Sy (w) = spectral density of the noise N(¢,2¢,).
Since the bandwidths of the process Mf(t) and the noise
N(t,2¢,) are very wide with respect to the loop bandwidth

B, , we can approximate Eqs. (15) and (16), respectively, as
follows:

2[Psin(2m)]* |

0(¢,,) =~
M [27)?

B, * Sy, (0) (17)

~ 2 . .
02(¢”)~W B, * S, (0) (18)

Here, we define the loop bandwidth B; as
_ 1 oy, dw
B, = 7f I|H(jw) I* - 5= (19)

Since the CCSDS has recommended that the subcarrier fre-
quency (f;,) to bit rate (R,) ratio be an integer [1], the power
spectral density Sy, () of the data-modulated subcarrier M(¢)
after low pass arm filtering is equal to zero at the origin (see
Appendix A). Thus the mean-squared phase jitter due to the
modulation is also equal to zero.

If the spectrum of the loop phase error is very narrow com-
pared to the noise component NV (¢) after low pass filtering, so
that it is constant relative to the noise components, then we
can show that ~

540 = 2P+ N, [40%(8,) +1]

B'N0
X P + 1 G(0) 1? cos?(m) + B - sin?(m)

(20)

where
B = %f |G (G2nf) 1* - df @1)
g = f Sy (N iGG2af)1* - df (22)

From these results, the mean-squared tracking phase jitter
can be shown, after some algebraic manipulations, to be

2(¢p)
() = 4" D , N(r:,a,ﬁ)
- N(m,a,ﬁ)] o, [l - N(m.a,a)}
L L

(23)

where N(m,a, ) and p; are given by

1

(cos®(m) - a + sin?(m))

N(m,a.p) =

X Iié +1G(0) |2 cos?(m) + 4 - sinz(m)]

(24)
p, = Loop Signal-to-Noise Ratio (SNR) = £ (25)
g NoB,
8'in Eq. (24) is defined as:
,_ P
6 = NOBI (26)

Since 02(¢D) and N(m,a, ) are always greater than zero,
then Eq. (23) makes sense only when (4/p, ) * N(m.a,8) <1.
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Thus, for (4/p;) + N(m.a,f) << 1, Eq. (23) can be approxi-
mated as

a*(g,) = 0*(8,) [1 + 2 'N(m‘a.B):|
Ay

+ N(m,a,f) + 4
PL (o,

; - N?(m.a,p)

(27)

The mean-squared tracking phase jitter described in Eq.
(27) shows how the Costas loop responds to the deep space
telemetry signal. The tracking phase jitter due to the Doppler
appears as a high pass function, and the jitter due to noise
appears as a low pass function. Since the tracking phase jitter
is inversely proportional to [cos2(m) - a - sin2(m)], the loop
will experience a serious degradation in tracking performance
when the modulation index m of the data is near m, (see [2] .

Eq. (15))

m, = cot™! (Va) (28)
At m = cot~!(v/a). the loop will drop lock at any loop
SNR.

If the Doppler signal can be compensated for and the loop
SNR is very high, then Eq. (28) can be written as:

N(im,o )

2 ~
0%(g,) pL

(29)

If the data does not utilize a square-wave subcarrier, then
the result found in Eq. (29) is similar to that found in [2] and
[4] (with the ranging channel turned off).

lll. Performance of the Costas Loop
in the Presence of Non-Deep
Space Telemetry

The signal format for non-deep space telemetry is the same
as that for deep space except that a sine-wave subcarrier wave-
form is used in place of the square wave [1]. Letting M, (¢) =
d(t) * sin(2nf,.t), and assuming that the arm filters are built
such that no spectral components greater than f, . get into the
error control signal in the loop, then following the above pro-
cedure we can show that the mean-squared tracking phase
jitter for this case is (see Appendix B)
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a'?(¢)) = o'*(¢p) {1 s 2 TN (m ey, ﬁl)J
Pi1

RGN ALY

1L o1,

(30)

where 0'2(4%) is defined as in Eq. (14), with H(s) replaced by
Hl(s)

v, K F(s)
N sty K- F(s)

Y, = PUS(m) -4 a - J2(m)] (31)
[(1/8)+21G(0) 2 I} (m") + 4 - B, + J2(m")]

N, a ,B) =
1070y By) [J2(m) -4 - o - J2(m")]

(32)

where o and 51 are given by
a = f Sya (P GU2nfY P - df (33)
B, = f Sy (N1GG2rf) 1* - df (34)

Here a; is the modulation distortion factor, and §,,,(f) is
the spectral density of M, (#), which is given by
SMl(f) = Sd(f—f.;‘c) + Sd(f+f:§'c) (35)

Note that p,; is defined the same as in Eq. (25), with A, (s)

in place of H(s) for the computation of B, . If the jitter due to

Doppler can be compensated for, and the loop SNR is high,
then Eq. (30) can be approximated as

All(ml’al'ﬁl)

0'%(9) = 5
1L

(36)

The loop will be degraded seriously in tracking performance
when the modulation index m' is near the value mc', which will
satisty

Vy(m) 17 (m)]? = 4-q (37)



IV. Numerical Examples

It is shown that the Costas loop will be degraded seriously
in tracking performance when the modulation index m (or m")
is near the critical value, called m, (or m_), which is given by
Eqgs. (28) and (37) for deep space and non-deep space mis-
sions, respectively. The loop will drop lock at any loop SNR
when the modulation index satisfies these equations. There-
fore, it is crucial to understand the behavior of the modulation
distortion factors & and o, as a function of data rate, subcar-
rier frequency, and arm filter noise bandwidth. In this section
we will evaluate these distortion factors and illustrate some
numerical results for the single-pole Butterworth arm filter.

The transfer function for the single-pole Butterworth filter
is given by

GG2nf)R = — L (38)

L+ (f/f)?

where f; , the 3-dB bandwidth, is related to the two-sided noise
bandwidth B, of the filter by

B,
— (39)

f(') =

Substituting Egs. (38) and (12) into Eq. (11) and rearrang-
ing gives the modulation distortion factor a, for Category B,
of the form

8+ (f,)° i = sin*(aT[f-kf,])
a = .
e KE(f=KE ) (F245])

T k=1
k odd

(40)

where T, = (1/R,) is the symbol duration of the telemetry data
sequence. In uncoded binary systems, the bit duration equals
the symbol duration. Thus, the ratio of subcarrier frequency,
J;c - to bit rate. R, for this case is

fs 'TS=(fSC/RS)=n, n=17273.... (41)

c

Using contour integration and carrying out the necessary
mathematics gives

n s k=1
k odd
B ‘ B 28, 2B,
X an,k_.—l b \n.k, )l—exp -} t R
Rs l RS RS s
(42)
herea( ., ... Yand b( ., ... )are given by
a(n.k.BR) = ! 43)

k? [(nkm)® + (B, /R )*]

(nkm)? - (8,/R)?
b(n.k,B,/R) = : (44)
(nkm)? +(B,/R)

The modulation distortion factor «, for Category A telem-
etry signals can be expressed in terms of a( ., ., .) and
b( ., .,.) by evaluating Eq. (33). For this case, it is found
that

B ( Bl) ' By B, B,

a = —ain, 1,5 Kb |n, 1,5} -exp|-2—-}|+2 5
! RS RS ( RS) RS RS
(45)

The numerical results of Eqs. (42) and (45) are plotted in
Figs. 1 and 2, respectively. There, the modulation factors «
and a, are plotted in decibels versus the ratio (B,/R,) for
various values of n, the ratio of subcarrier frequency to bit
rate. Using these results for a and o, in Figs. 1 and 2, the
critical modulation index m, versus the ratio (B;/R;) with n
as a parameter can be plotted. As an example, Fig. 3 illustrates
the critical modulation index m, for Category B missions as a
function of (B, /R,). Figures 1 and 2 show that the modulation
distortion factors for both Categories A and B decrease as the
subcarrier frequency to bit rate ratio, »n, increases. The physi-
cal meaning for this is that the degradation in tracking perfor-
mance of the loop is less when we place the data further away
from the carrier (at the expense of wider bandwidth). Further-
more, from these figures, we observe that for a given bit rate
there exists an optimum noise bandwidth for the arm filters in
the sense of minimizing the degradation in mean-squared track-
ing phase jitter. It is also seen that the degradation in the
modulation distortion factor for Category A is more than that
of Category B for a given n and (B,/R,). Figure 3 shows that
the critical modulation index m, decreases as the noise band-
width to bit rate ratio (B, /R,) increases. Also,m, is shown to

233



decrease as we place the data closer to the carrier frequency
(decreasing in n). This means that the closer we place the data
to the carrier, the more power the carrier requires to maintain
a proper tracking performance.

V. Conclusions

It has been shown that the Costas loop can be used to track
space telemetry signals in the presence of Doppler. This opera-
tion can increase mean-squared tracking jitter if there is a

residual carrier, as was recommended for both Categories A
(non-deep space) and B (deep space) telemetry signals. The
performance degradation of the loop can be optimized by
choosing a proper subcarrier waveform, subcarrier frequency,
bit rate, and arm filter noise bandwidth. This article has
numerically evaluated such degradation for single-pole Butter-
worth arm filters for both Categories A and B. To completely
understand the behavior of the Costas loop in the presence of
space telemetry signals, the false lock performance still needs
to be found.
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Fig. 2. Modulation distortion factor vs. (B, /R,), Category A

235



236
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Appendix A

The power spectral density of the data-modulated subcar-
rier M(¢) after low-pass arm filtering is given by

Sud@) = Sy(@)+ 1GG2nN) P (A1)

where S, (w) is given in Eq. (12), and G(-) is the transfer
function of the low pass arm filter.

Since the CCSDS has recommended that the NRZ binary
signal be used for d(¢). the power spectrum density S,(f) of
the equiprobable NRZ binary signal is given by

S,(F) = T+ [sin(nfT) [ (nfT)] (A-2)

The spectral density of the low pass arm filtered data-
modulated subcarrier at the origin, for an NRZ binary signal,
can be obtained by substituting Eq. (A-2) into Eq. (12), then
substituting the result into Eq. (A-1) and evaluating it at w =
27f =0. The result is given as follows:

oo 7 2
PO RS T
k odd

From Eq. (41), the product (T, f,.) always equals an inte-
ger. Thus, Eq. (A-3) becomes

SpyA0) = 0 (A-4)
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Appendix B

From Eq. (1), the non-deep space Category A signal can be
written as

S'(t) = V2P J(m') - sin(w,r +07(1))
+\/2P J(m'y - d(t) - cos(uyt +8'(r))
(B-1)
Here we have assumed that
20 logm(fo(m')) >> 20 loglo(.lz(m'))
20 log, ,(J,(m')) >> 20 log, ,(J5(m"))
If the Costas loop is used to track this signal in the presence

of AWGN, then the loop phase estimate of 6'(z). g(t), can be
shown to have the form

81y = BEEO g 007 - 4 - 0, - 0,02 260))
4l (m') - T (m') My (1) + n (2, 2¢;)] (B-2)
where

¢.(1) = 6'(t)-08'(t) = loop phase error (B-3)
m(£.28)) = [N, 0 = N 0 + VPN, (0) - I (m)
- 2M, (1) N (0 T (m)}] - (26))
HERCRACEENZIACEFACY

# 20,0 N, (0) - 7, ()] (B-4)
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le(z‘) = G(p) - M (1), M (r) = d(2) * sin(2nf 1)
(B-5)
It should be noted here that all the other parameters
(which are not defined here) have been defined in the preced-
ing sections, and that the previous assumptions (small loop
phase error, small self-noise of the modulation) are used in

deriving Eq. (B-2).

Let

y, = PlUF(m) - 4-a - T2 (m)) (B-6)

where a, is the modulation distortion factor which was de-
fined in Eq. (33).

From Eq. (B-3). Eq. (B-2) can be rearranged as

26,(r) = 2¢,,(5) + 29, (1) + 20, (1) (B-7)
where

(0 = [1- H,(p)] - 0') (B8)

, 2P Jo(m') - (M)
0, (1) = . CH (D) M) (B9)

1
L H® ,

¢, (1) = 2y - (1,29) (B-10)

1

where H, (s) is the closed-loop transfer function (for this par-
ticular case) which is defined in Eq. (31).

Following the procedure in Section II, the mean-squared
tracking phase jitter for non-deep space telemetry signals can
be shown to take the form expressed in Eq. (30).



